359 research outputs found

    Network flow problems and congestion games : complexity and approximation results

    Get PDF
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2006.Includes bibliographical references (p. 155-164).(cont.) We first address the complexity of finding an optimal minimum cost solution to a congestion game. We consider both network and general congestion games, and we examine several variants of the problem concerning the structure of the game and its associated cost functions. Many of the problem variants are NP-hard, though we do identify several versions of the games that are solvable in polynomial time. We then investigate existence and the price of anarchy of pure Nash equilibria in k-splittable congestion games with linear costs. A k-splittable congestion game is one in which each player may split its flow on at most k different paths. We identify conditions for the existence of equilibria by providing a series of potential functions. For the price of anarchy, we show an asymptotic lower bound of 2.4 for unweighted k-splittable congestion games and 2.401 for weighted k-splittable congestion games, and an upper bound of 2.618 in both cases.In this thesis we examine four network flow problems arising in the study of transportation, communication, and water networks. The first of these problems is the Integer Equal Flow problem, a network flow variant in which some arcs are restricted to carry equal amounts of flow. Our main contribution is that this problem is not approximable within a factor of 2n(1-epsilon]), for any fixed [epsilon] > 0, where n is the number of nodes in the graph. We extend this result to a number of variants on the size and structure of the arc sets. We next study the Pup Matching problem, a truck routing problem where two commodities ('pups') traversing an arc together in the network incur the arc cost only once. We propose a tighter integer programming formulation for this problem, and we address practical problems that arise with implementing such integer programming solutions. Additionally, we provide approximation and exact algorithms for special cases of the problem where the number of pups is fixed or the total cost in the network is bounded. Our final two problems are on the topic of congestion games, which were introduced in the area of communications networks.by Carol Meyers.Ph.D

    Genetics of Resistance to the Rust Fungus Coleosporium ipomoeae in Three Species of Morning Glory (Ipomoea)

    Get PDF
    We examined the genetic basis of resistance to the rust pathogen Coleosporium ipomoea in three host species: Ipomoea purpurea, I. hederacea, and I. coccinea (Convolvulaceae). In crosses between resistant and susceptible individuals, second-generation selfed offspring segregated in ratios that did not differ statistically from the 3∶1 ratio indicative of single-gene resistance with the resistant allele dominant. One out of three crosses between resistant individuals from two different populations revealed that resistance loci differed in the two populations, as evidenced by the production of susceptible individuals among the S2 generation. These results suggest that gene-for-gene interactions contribute substantially to the dynamics of coevolution in this natural pathosystem. They also suggest that evolution of resistance to the same pathogen strain may involve different loci in different Ipomoea populations

    Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review

    Get PDF
    The maintenance of quality of life (QoL) in patients with high-grade glioma is an important endpoint during treatment, particularly in those with glioblastoma multiforme (GBM) given its dismal prognosis despite limited advances in standard therapy. It has proven difficult to identify new therapies that extend survival in patients with recurrent GBM, so one of the primary aims of new therapies is to reduce morbidity, restore or preserve neurologic functions, and the capacity to perform daily activities. Apart from temozolomide, cytotoxic chemotherapeutic agents do not appear to significantly impact response or survival, but produce toxicity that is likely to negatively impact QoL. New biological agents, such as bevacizumab, can induce a clinically meaningful proportion of durable responses among patients with recurrent GBM with an acceptable safety profile. Emerging evidence suggests that bevacizumab produces an improvement or preservation of neurocognitive function in GBM patients, suggestive of QoL improvement, in most poor-prognosis patients who would otherwise be expected to show a sudden and rapid deterioration in QoL

    Mechanics of fragmentation of crocodile skin and other thin films

    Get PDF
    Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile’s head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young’s modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin

    Predictors of podiatry utilisation in Australia: the North West Adelaide Health Study

    Get PDF
    Background Foot problems are highly prevalent in the community; however no large population-based studies have examined the characteristics of those who do and do not access podiatry services in Australia. The aim of this study was to explore patterns of podiatry utilisation in a population-based sample of people aged 18 years and over living in the northwest region of Adelaide, South Australia.Methods The North West Adelaide Health Study is a representative longitudinal cohort study of 4,060 people randomly selected and recruited by telephone interview. The interview included questions regarding healthcare service utilisation in the past year. Data were also collected on education, income and major medical conditions.Results Overall, 9.5% of the total sample and 17.7% of those who reported foot pain had attended a podiatrist in the past year. Participants who had accessed podiatry treatment were more likely to be female, be aged over 45 years, be obese, and have major chronic medical conditions (osteoporosis, osteoarthritis, diabetes, cardiovascular disease and high blood pressure). Those who reported foot pain but had not accessed a podiatrist were more likely to be male and be aged 20 to 34 years.Conclusion Only a small proportion of people who report foot pain have accessed podiatry services in the past year. There is a need to further promote podiatry services to the general community, particularly to men and younger people.Hylton B Menz, Tiffany K Gill, Anne W Taylor and Catherine L Hil

    Characterization of a Novel Interaction between Bcl-2 Members Diva and Harakiri

    Get PDF
    Interactions within proteins of the Bcl-2 family are key in the regulation of apoptosis. The death-inducing members control apoptotic mechanisms partly by antagonizing the prosurvival proteins through heterodimer formation. Structural and biophysical studies on these complexes are providing important clues to understand their function. To help improve our knowledge on protein-protein interactions within the Bcl-2 family we have studied the binding between two of its members: mouse Diva and human Harakiri. Diva has been shown to perform both prosurvival and killing activity. In contrast, Harakiri induces cell death by interacting with antiapoptotic Bcl-2 members. Here we show using ELISA and NMR that Diva and Harakiri can interact in vitro. Combining the NMR data with the previously reported three-dimensional structure of Diva we find that Harakiri binds to a specific region in Diva. This interacting surface is equivalent to the known binding area of prosurvival Bcl-2 members from the reported structures of the complexes, suggesting that Diva could function at the structural level similarly to the antiapoptotic proteins of the Bcl-2 family. We illustrate this result by building a structural model of the heterodimer using molecular docking and the NMR data as restraints. Moreover, combining circular dichroism and NMR we also show that Harakiri is largely unstructured with residual (13%) α-helical conformation. This result agrees with intrinsic disorder previously observed in other Bcl-2 members. In addition, Harakiri constructs of different length were studied to identify the region critical for the interaction. Differential affinity for Diva of these constructs suggests that the amino acid sequence flanking the interacting region could play an important role in binding

    Thermomechanical couplings in shape memory alloy materials

    Get PDF
    In this work we address several theoretical and computational issues which are related to the thermomechanical modeling of shape memory alloy materials. More specifically, in this paper we revisit a non-isothermal version of the theory of large deformation generalized plasticity which is suitable for describing the multiple and complex mechanisms occurring in these materials during phase transformations. We also discuss the computational implementation of a generalized plasticity based constitutive model and we demonstrate the ability of the theory in simulating the basic patterns of the experimentally observed behavior by a set of representative numerical examples

    Tbx6 Regulates Left/Right Patterning in Mouse Embryos through Effects on Nodal Cilia and Perinodal Signaling

    Get PDF
    Background: The determination of left/right body axis during early embryogenesis sets up a developmental cascade that coordinates the development of the viscera and is essential to the correct placement and alignment of organ systems and vasculature. Defective left-right patterning can lead to congenital cardiac malformations, vascular anomalies and other serious health problems. Here we describe a novel role for the T-box transcription factor gene Tbx6 in left/right body axis determination in the mouse. Results: Embryos lacking Tbx6 show randomized embryo turning and heart looping. Our results point to multiple mechanisms for this effect. First, Dll1, a direct target of Tbx6, is down regulated around the node in Tbx6 mutants and there is a subsequent decrease in nodal signaling, which is required for laterality determination. Secondly, in spite of a lack of expression of Tbx6 in the node, we document a profound effect of the Tbx6 mutation on the morphology and motility of nodal cilia. This results in the loss of asymmetric calcium signaling at the periphery of the node, suggesting that unidirectional nodal flow is disrupted. To carry out these studies, we devised a novel method for direct labeling and live imaging cilia in vivo using a genetically-encoded fluorescent protein fusion that labels tubulin, combined with laser point scanning confocal microscopy for direct visualization of cilia movement. Conclusions: We conclude that the transcription factor gene Tbx6 is essential for correct left/right axis determination in th

    Roles of Salivary Components in Streptococcus mutans Colonization in a New Animal Model Using NOD/SCID.e2f1−/− Mice

    Get PDF
    Streptococcus mutans plays an important role in biofilm formation on the tooth surface and is the primary causative agent of dental caries. The binding of S. mutans to the salivary pellicle is of considerable etiologic significance and is important in biofilm development. Recently, we produced NOD/SCID.e2f1−/− mice that show hyposalivation, lower salivary antibody, and an extended life span compared to the parent strain: NOD.e2f1−/−. In this study we used NOD/SCID.e2f1−/− 4 or 6 mice to determine the roles of several salivary components in S. mutans colonization in vivo. S. mutans colonization in NOD/SCID.e2f1−/− mice was significantly increased when mice were pre-treated with human saliva or commercial salivary components. Interestingly, pre-treatment with secretory IgA (sIgA) at physiological concentrations promoted significant colonization of S. mutans compared with sIgA at higher concentrations, or with human saliva or other components. Our data suggest the principal effects of specific sIgA on S. mutans occur during S. mutans colonization, where the appropriate concentration of specific sIgA may serve as an anti-microbial agent, agglutinin, or an adherence receptor to surface antigens. Further, specific sIgA supported biofilm formation when the mice were supplied 1% sucrose water and a non-sucrose diet. The data suggests that there are multiple effects exerted by sIgA in S. mutans colonization, with synergistic effects evident under the condition of sIgA and limited nutrients on colonization in NOD/SCID.e2f1−/− mice. This is a new animal model that can be used to assess prevention methods for dental biofilm-dependent diseases such as dental caries
    corecore